2021年成人高考文科数学难点讲解:等差数列、等比数列
等差、等比数列的性质是等差、等比数列的概念,通项公式,前n项和公式的引申.应用等差等比数列的性质解题,往往可以回避求其首项和公差或公比,使问题得到整体地解决,能够在运算时达到运算灵活,方便快捷的目的,故一直受到重视.成人高考中也一直重点考查这部分内容。
●难点磁场
(★★★★★)等差数列{an}的前n项的和为30,前2m项的和为100,求它的前3m项的和为_________.
●案例探究
[例1]已知函数f(x)= (x<-2).
(1)求f(x)的反函数f--1(x);
(2)设a1=1, =-f--1(an)(nN*),求an;
(3)设Sn=a12+a22+…+an2,bn=Sn+1-Sn是否存在最小正整数m,使得对任意nN*,有bn< 成立?若存在,求出m的值;若不存在,说明理由.
命题意图:本题是一道与函数、数列有关的综合性题目,着重考查学生的逻辑分析能力,属★★★★★级题目.
知识依托:本题融合了反函数,数列递推公式,等差数列基本问题、数列的和、函数单调性等知识于一炉,结构巧妙,形式新颖,是一道精致的综合题.
错解分析:本题首问考查反函数,反函数的定义域是原函数的值域,这是一个易错点,(2)问以数列{ }为桥梁求an,不易突破.
技巧与方法:(2)问由式子 得 =4,构造等差数列{ },从而求得an,即借鸡生蛋是求数列通项的常用技巧;(3)问运用了函数的思想.
解:(1)设y= ,∵x<-2,x=- ,
即y=f--1(x)=- (x>0)
(2)∵ ,
∴{ }是公差为4的等差数列,
∵a1=1, = +4(n-1)=4n-3,∵an>0,an= .
(3)bn=Sn+1-Sn=an+12= ,由bn< ,得m> ,
设g(n)= ,∵g(n)= 在nN*上是减函数,
g(n)的最大值是g(1)=5,m>5,存在最小正整数m=6,使对任意nN*有bn< 成立.
[例2]设等比数列{an}的各项均为正数,项数是偶数,它的所有项的和等于偶数项和的4倍,且第二项与第四项的积是第3项与第4项和的9倍,问数列{lgan}的前多少项和最大?(lg2=0.3,lg3=0.4)
命题意图:本题主要考查等比数列的基本性质与对数运算法则,等差数列与等比数列之间的联系以及运算、分析能力.属★★★★★级题目.
知识依托:本题须利用等比数列通项公式、前n项和公式合理转化条件,求出an;进而利用对数的运算性质明确数列{lgan}为等差数列,分析该数列项的分布规律从而得解.
错解分析:题设条件中既有和的关系,又有项的关系,条件的正确转化是关键,计算易出错;而对数的运算性质也是易混淆的地方.
技巧与方法:突破本题的关键在于明确等比数列各项的对数构成等差数列,而等差数列中前n项和有最大值,一定是该数列中前面是正数,后面是负数,当然各正数之和最大;另外,等差数列Sn是n的二次函数,也可由函数解析式求最值.
解法一:设公比为q,项数为2m,mN*,依题意有
化简得 .
设数列{lgan}前n项和为Sn,则
Sn=lga1+lga1q2++lga1qn-1=lga1nq1+2++(n-1)
=nlga1+ n(n-1)lgq=n(2lg2+lg3)- n(n-1)lg3
=(- )n2+(2lg2+ lg3)n
可见,当n= 时,Sn最大.
而 =5,故{lgan}的前5项和最大.
解法二:接前, ,于是lgan=lg[108( )n-1]=lg108+(n-1)lg ,
数列{lgan}是以lg108为首项,以lg 为公差的等差数列,令0,得2lg2-(n-4)lg3;0,n =5.5.
由于nN*,可见数列{lgan}的前5项和最大.
●锦囊妙计
1.等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题的既快捷又方便的工具,应有意识去应用.
2.在应用性质时要注意性质的前提条件,有时需要进行适当变形.
3.巧用性质、减少运算量在等差、等比数列的计算中非常重要,但用基本量法并树立目标意识,需要什么,就求什么,既要充分合理地运用条件,又要时刻注意题的目标,往往能取得与巧用性质解题相同的效果.
版权声明:本文“2021年成人高考文科数学难点讲解:等差数列、等比数列”来自“甘肃成人高考网”,内容来自互联网,有关成人高考高起专、高起本、专升本的报名时间、入口、费用等信息内容请以甘肃省教育考试院官网为准。若转载,请注明:http://www.chengkao.gs.cn/gqb/65.html,若本站收录的信息无意侵犯了版权等相关问题,请给我们致电或留言,我们会第一时间处理和回复。
文章评论(已有条评论)